Selasa, 18 Januari 2011

Cara Kerja Protokol Pada Router

1. RIP
Routing Information Protocol (RIP) adalah sebuah protokol routing yang digunakan dalam lokal dan wide area network. Karena itu RIP diklasifikasikan sebagai interior gateway protocol (IGP). RIP menggunakan routing vektor jarak-algoritma. Pertama kali didefinisikan dalam RFC 1058 (1988). Protokol sejak telah diperpanjang beberapa kali, mengakibatkan RIP Version 2 (RFC 2453). RIP dan RIP v2 digunakan untuk saat ini . RIP dan RIP V2 dibuat lehib maju oleh oleh teknik seperti Open Shortest Path First (OSPF) dan OSI protokol IS-IS. RIP juga telah diadaptasi untuk digunakan dalam jaringan IPv6, yang dikenal sebagai standar RIPng (RIP generasi berikutnya), yang diterbitkan dalam RFC 2080 (1997).

CARA KERJA RIP

— Host mendengar pada alamat broadcast jika ada update routing dari gateway.
— Host akan memeriksa terlebih dahulu routing table lokal jika menerima update routing .
— Jika rute belum ada, informasi segera dimasukkan ke routing table .
— Jika rute sudah ada, metric yang terkecil akan diambil sebagai acuan.
— Rute melalui suatu gateway akan dihapus jika tidak ada update dari gateway tersebut dalam waktu tertentu
— Khusus untuk gateway, RIP akan mengirimkan update routing pada alamat broadcast di setiap network yang terhubung


2. OSPF
Open Shortest Path First (OSPF) adalah protokol routing yang dipergunakan dalam Internet Protocol (IP) jaringan. ini adalah link-state routing protocol dan juga sebagai kelompok interior gateway protokol, yang beroperasi dalam satu sistem otonom (AS). Didefinisikan sebagai OSPF Versi 2 dalam RFC 2328 (1998) untuk IPv4. [1] The update untuk IPv6 ditetapkan sebagai OSPF Versi 3 dalam RFC 5340 (2008). [2]
OSPF adalah mungkin yang paling banyak digunakan interior gateway protocol (IGP) di perusahaan besar jaringan; IS-IS, lain routing link-state protokol,dan ini lebih sering terjadi pada jaringan penyedia layanan besar.Yang paling banyak digunakan protokol eksterior gateway adalah Border Gateway Protocol (BGP), routing utama antara sistem-sistem otonom di Internet.

Cara kerja OSPF
OSPF harus membentuk hubungan dulu dengan router tetangganya untuk dapat saling berkomunikasi seputar informasi routing. Untuk membentuk sebuah hubungan dengan router tetangganya, OSPF mengandalkan Hello protocol. Namun uniknya cara kerja Hello protocol pada OSPF berbeda-beda pada setiap jenis media. Ada beberapa jenis media yang dapat meneruskan informasi OSPF, masing-masing memiliki karakteristik sendiri, sehingga OSPF pun bekerja mengikuti karakteristik mereka. Media tersebut adalah sebagai berikut:
• Broadcast Multiaccess
Media jenis ini adalah media yang banyak terdapat dalam jaringan lokal atau LAN seperti misalnya ethernet, FDDI, dan token ring. Dalam kondisi media seperti ini, OSPF akan mengirimkan traffic multicast dalam pencarian router-router neighbour-nya. Namun ada yang unik dalam proses pada media ini, yaitu akan terpilih dua buah router yang berfungsi sebagai Designated Router (DR) dan Backup Designated Router (BDR). Apa itu DR dan BDR akan dibahas berikutnya.

• Point-to-Point
Teknologi Point-to-Point digunakan pada kondisi di mana hanya ada satu router lain yang terkoneksi langsung dengan sebuah perangkat router. Contoh dari teknologi ini misalnya link serial. Dalam kondisi Point-to-Point ini, router OSPF tidak perlu membuat Designated Router dan Back-up-nya karena hanya ada satu router yang perlu dijadikan sebagai neighbour. Dalam proses pencarian neighbour ini, router OSPF juga akan melakukan pengiriman Hello packet dan pesan-pesan lainnya menggunakan alamat multicast bernama AllSPFRouters 224.0.0.5.

• Point-to-Multipoint
Media jenis ini adalah media yang memiliki satu interface yang menghubungkannya dengan banyak tujuan. Jaringan-jaringan yang ada di bawahnya dianggap sebagai serangkaian jaringan Point-to-Point yang saling terkoneksi langsung ke perangkat utamanya. Pesan-pesan routing protocol OSPF akan direplikasikan ke seluruh jaringan Point-to-Point tersebut.
Pada jaringan jenis ini, traffic OSPF juga dikirimkan menggunakan alamat IP multicast. Tetapi yang membedakannya dengan media berjenis broadcast multi-access adalah tidak adanya pemilihan Designated dan Backup Designated Router karena sifatnya yang tidak
meneruskan broadcast.

• Nonbroadcast Multiaccess (NBMA)
Media berjenis Nonbroadcast multi-access ini secara fisik merupakan sebuah serial line biasa yang sering ditemui pada media jenis Point-to-Point. Namun secara faktanya, media ini dapat menyediakan koneksi ke banyak tujuan, tidak hanya ke satu titik saja. Contoh dari media ini adalah X.25 dan frame relay yang sudah sangat terkenal dalam menyediakan solusi bagi kantor-kantor yang terpencar lokasinya. Di dalam penggunaan media ini pun dikenal dua jenis penggunaan, yaitu jaringan partial mesh dan fully mesh.
OSPF melihat media jenis ini sebagai media broadcast multiaccess. Namun pada kenyataannya, media ini tidak bisa meneruskan broadcast ke titik-titik yang ada di dalamnya. Maka dari itu untuk penerapan OSPF dalam media ini, dibutuhkan konfigurasi DR dan BDR yang dilakukan secara manual. Setelah DR dan BDR terpilih, router DR akan mengenerate LSA untuk seluruh jaringan.
Dalam media jenis ini yang menjadi DR dan BDR adalah router yang memiliki koneksi langsung ke seluruh router tetangganya. Semua traffic yang dikirimkan dari router-router neighbour akan direplikasikan oleh DR dan BDR untuk masing-masing router dan dikirim dengan menggunakan alamat unicast atau seperti layaknya proses OSPF pada media Point-to-Point.


3. IGRP
Interior Gateway routing Protocol atau yang biasa dikenal dengan sebutan IGRP merupakan suatu protokol jaringan kepemilikan yang mengembangkan sistem Cisco yang dirancang pada sistem otonomi untuk menyediakan suatu alternatif RIP (Routing Information Protocol). IGRP merupakan suatu penjaluran jarak antara vektor protokol, bahwa masing-masing penjaluran bertugas untuk mengirimkan semua atau sebagian dari isi table penjaluran dalam penjaluran pesan untuk memperbaharui pada waktu tertentu untuk masing-masing penjaluran.
Penjaluran memilih alur yang terbaik antara sumber dan tujuan. Untuk menyediakan fleksibilitas tambahan, IGRP mengijinkan untuk melakukan penjaluran multipath. Bentuk garis equal bandwidth dapat menjalankan arus lalu lintas dalam round robin, dengan melakukan peralihan secara otomatis kepada garis kedua jika sampai garis kesatu turun.

Operasi IGRP
Masing-masing penjaluran secara rutin mengirimkan masing-masing jaringan lokal kepada suatu pesan yang berisi salinan tabel penjaluran dari tabel lainnya. Pesan ini berisi tentang biaya-biaya dan jaringan yang akan dicapai untuk menjangkau masing-masing jaringan tersebut. Penerima pesan penjaluran dapat menjangkau semua jaringan didalam pesan sepanjang penjaluran yang bisa digunakan untuk mengirimkan pesan.

Tujuan dari IGRP yaitu:
• Penjaluran stabil dijaringan kompleks sangat besar dan tidaka ada pengulangan penjaluran.
• Overhead rendah, IGRP sendiri tidak menggunakan bandwidth yang diperlukan untuk tugasnya.
• Pemisahan lalu lintas antar beberapa rute paralel.
• Kemampuan untuk menangani berbagai jenis layanan dengan informasi tunggal.
• Mempertimbangkan menghitung laju kesalahan dan tingkat lalu lintas pada alur yang berbeda.
Perubahan IGRP
Kemudian setelah melalui proses pembaharuan IGRP kemudian menjadi EIGRP (Enhanced IGRP), persamaannya adalah IGRP dan EIGRP sama-sama kompatibel dan antara router-router yang menjalankan EIGRP dan IGRP dengan autonomous system yang sama akan langsung otomatis terdistribusi. Selain itu EIGRP juga akan memberikan tagging external route untuk setiap route yang berasal dari:
• Routing protocol non EIGRP.
• Routing protocol IGRP dengan AS number yang sama.

4. EIGRP
EIGRP (Enhanced Interior Gateway Routing Protocol) adalah routing protocol yang hanya di adopsi oleh router cisco atau sering disebut sebagai proprietary protocol pada cisco. Dimana EIGRP ini hanya bisa digunakan sesama router cisco saja. Bgmn bila router cisco digunakan dengan router lain spt Juniper, Hwawei, dll menggunakan EIGRP??? Seperti saya bilang diatas, EIGRP hanya bisa digunakan sesama router cisco saja. EIGRP ini sangat cocok digunakan utk midsize dan large company. Karena banyak sekali fasilitas2 yang diberikan pada protocol ini.
Hal-hal dasar yang perlu diketahui
EIGRP sering disebut juga hybrid-distance-vector routing protocol, karena EIGRP ini terdapat dua tipe routing protocol yang digunakan, yaitu:
- distance vector, dan
- link state.
Utk tipe2 routing protocol akan saya tambahkan sehabis penjelasan tentang EIGRP.
EIGRP ini pengembangan dari routing protocol IGRP (distance vector), prorpietary cisco juga. Perbandingan (bukan perbedaan) antar IGRP dan EIGRP di bagi menjadi beberapa kategori:
1. Compability mode
2. Metric colocation
3. Hop count
4. Automatic protocol redistribution
5. Route tagging
EIGRP dan IGRP dapat di kombinasikan satu sama lain karena EIGRP adalah hanya pengembangan dari IGRP.
Dalam perhitungan untuk menentukan path/jalur manakah yang tercepat/terpendek, EGIRP menggunakan algortima DUAL (Diffusing-Update Algorithm) dalam menentukannya.
EIGRP mempunyai 3 table dalam menyimpan informasi networknya:
1. Neighbor table
2. Topology table
3. Routing table
Penjelasan :
1. Neighbor table : Tabel yang paling penting dari tabel2 yang lainnya. di tabel ini menyimpan list tentang router2 tetangganya. Setiap ada router baru yg dipasang,address dan interface lgsg dicatat di tabel ini.
2. Topology table : Tabel ini dibuat untuk memenuhi kebutuhan dari Routing table dalam 1 autonomous system (kya sistem area di OSPF). DUAL mengambil informasi dari “neighbor tabel” dan “topology table” untuk melakukan kalkulasi “lowest cost routes to each destination”. Setelah melakukan kalkulasi akan ada yang namanya “successor route”. Successor route ini disimpan di tabel ini juga lho.
3. Routing table : menyimpan the best routes to a destination. Informasi tersebut diambil dari “topology table”
Internal Route : Route-route yang berasal dari dalam suatu autonomous system dari router2 yang menggunakan routing protocol EIGRP, yang menjadi anggota dari autonomous system adalah yang mempunyai ADN dari EIGRP yang sama dan mempunyai autonomous system yang sama juga. ADN internal route adalah 90.
External Route : Route-route yang muncul dari luar autonomous system, baik redistribution secara manual maupun secara otomatis.
Cara Kerja dari EIGRP
EIGRP akan mengirimkan hello packet utk mengetahui apakah router2 tetangganya masih hidup ataukah mati. Pengiriman hello packet tersebut bersifat simultant, dalamhello packet tersebut mempunyai hold time, bila dalam jangka waktu hold time router tetangga tidak membalas.. maka router tsb akan dianggap mati. Biasanya hold time itu 3x waktunya hello packet, hello packet defaultnya 15 second. Lalu DUAL akan meng-kalkulasi ulang utk path2nya. Hello packet dikirim secara multicast ke IP Address 224.0.0.10.
Cara Menggunakan EIGRP
router(config)#router eigrp [autonomous-system-number]
router(config-router)#network [network-number]
Bila anda ingin mematikan auto-summary dan menggunakan summary address anda sendiri, anda bisa membaca postingan saya tentang Route Summarization in EIGRP
Verifying Konfigurasi EIGRP
router#show ip eigrp neighbors
router#show ip eigrp interface [type-number] [as-number] [details]
router#show ip eigrp topology [as-number] {[ip address] [subnet mask]}
router#show ip eigrp topologi [active | pending | zero-successors]
Keuntungan Menggunakan EIGRP
Point2 yang menguntungkan bila menggunakan routing protocol EIGRP :
- Rapid convergence
- Efficient use of bandwidth
- Support for VLSM and CIDR
- Multiple network layer support (IP, IPX, Apple Talk)
- Independence from routed protocols

5. BGP (BORDER GATEWAY PROTOKOL)
Routing protokol BGP baru dapat dikatakan bekerja pada sebuah router jika sudah terbentuk sesi komunikasi dengan router tetangganya yang juga menjalankan BGP. Sesi komunikasi ini adalah berupa komunikasi dengan protokol TCP dengan nomor port 179. Setelah terjalin komunikasi ini, maka kedua buah router BGP dapat saling bertukar informasi rute.

Untuk berhasil menjalin komunikasi dengan router tetangganya sampai dapat saling bertukar informasi routing, ada beberapa hal yang perlu diperhatikan:

1. Kedua buah router telah dikonfigurasi dengan benar dan siap menjalankan
routing protokol BGP.

2. Koneksi antarkedua buah router telah terbentuk dengan baik tanpa adanya
gangguan pada media koneksinya.

3. Pastikan paket-paket pesan BGP yang bertugas membentuk sesi BGP dengan router
tetangganya dapat samp dengan baik ke tujuannya.

4. Pastikan kedua buah router BGP tidak melakukan pemblokiran port komunikasi TCP
179.

5. Pastikan kedua buah router tidak kehabisan resource saat sesi BGP sudah
terbentuk dan berjalan.

Setelah semuanya berjalan dengan baik, maka sebuah sesi BGP dapat bekerja dengan
baik pada router Anda.

Untuk membentuk dan mempertahankan sebuah sesi BGP dengan router tetangganya,
BGP
mempunyai mekanismenya sendiri yang unik. Pembentukan sesi BGP ini mengandalkan
paket-paket pesan yang terdiri dari empat macam. Paket-paket tersebut adalah
sebagai berikut:

1. Open Message
Sesuai dengan namanya, paket pesan jenis ini merupakan paket pembuka sebuah
sesi BGP. Paket inilah yang pertama dikirimkan ke router tetangga untuk
membangun sebuah sesi komunikasi. Paket ini berisikan informasi mengenai BGP
version number, AS number, hold time, dan router ID.

2. Keepalive Message
Paket Keepalive message bertugas untuk menjaga hubungan yang telah terbentuk
antarkedua router BGP. Paket jenis ini dikirimkan secara periodik oleh kedua
buah router yang bertetangga. Paket ini berukuran 19 byte dan tidak berisikan
data sama sekali.

3. Notification Message
Paket pesan ini adalah paket yang bertugas menginformasikan error yang
terjadi terhadap sebuah sesi BGP. Paket ini berisikan field-field yang berisi
jenis error apa yang telah terjadi, sehingga sangat memudahkan penggunanya
untuk melakukan troubleshooting.

4. Update Message
Paket update merupakan paket pesan utama yang akan membawa informasi
rute-rute yang ada. Paket ini berisikan semua informasi rute BGP yang ada
dalam jaringan tersebut. Ada tiga komponen utama dalam paket pesan ini, yaitu
Network-Layer Reachability Information (NLRI), path attribut, dan withdrawn
routes.

Apa Saja Atribut-atribut BGP?
Salah satu ciri khas dan juga merupakan kekuatan dari routing protokol BGP ada
pada atribut-atribut pendukungnya. Atribut-atribut ini yang nantinya digunakan
sebagai parameter untuk menentukan jalur terbaik untuk menuju ke suatu situs.
Atribut ini juga dapat mengatur keluar masuknya routing update dari router-router
BGP tetangga. Dengan mengatur atribut ini, Anda dapat dengan bebas mengatur
bagaimana karakteristik dan sifat dari sesi BGP tersebut.

Untuk melayani Anda mengatur dengan sebebas-bebasnya, tersedia 10 macam atribut
BGP yang umum ditambah satu atribut BGP yang hanya ada pada produk-produk Cisco.
Masing-masing memiliki ciri khas dan tugasnya tersendiri untuk memungkinkan Anda
memanajemen routing update dan traffic yang keluar masuk. Berikut ini adalah ke-11
atribut-atribut BGP:

1. Origin
Atribut BGP yang satu ini merupakan atribut yang termasuk dalam jenis Well
known mandatory. Jika sumbernya berasal router BGP dalam jaringan lokal atau
menggunakan asnumber yag sama dengan yang sudah ada, maka indicator atribut
ini adalah huruf “i” untuk interior. Apabila sumber rute berasal dari luar
jaringan lokal, maka tandanya adalah huruf “e” untuk exterior. Sedangkan
apabila rute didapat dari hasil redistribusi dari routing protokol lain,
maka tandanya adalah “?” yang artinya adalah incomplete.

2. AS_Path
Atribut ini harus ada pada setiap rute yang dipertukarkan menggunakan BGP.
Atribut ini menunjukkan perjalanan paket dari awal hingga berakhir di tempat
Anda. Perjalanan paket ini ditunjukkan secara berurut dan ditunjukkan dengan
menggunakan nomor-nomor AS. Dengan demikian, akan tampak melalui mana saja
sebuah paket data berjalan ke tempat Anda.

3. Next Hop
Next hop sesuai dengan namanya, merupakan atribut yang menjelaskan ke mana
selanjutnya sebuah paket data akan dilemparkan untuk menuju ke suatu lokasi.
Dalam EBGP-4, yang menjadi next hop dari sebuah rute adalah alamat asal
(source address) dari sebuah router yang mengirimkan prefix tersebut dari
luar AS. Dalam IBGP-4, alamat yang menjadi parameter next hop adalah alamat
dari router yang terakhir mengirimkan rute dari prefix tersebut. Atribut ini
juga bersifat Wellknown Mandatory.

4. Multiple Exit Discriminator (MED)
Atribut ini berfungsi untuk menginformasikan router yang berada di luar AS untuk mengambil jalan tertentu untuk mencapat si pengirimnya. Atribut ini dikenal sebagai metrik eksternal dari sebuah rute. Meskipun dikirimkan ke AS lain, atribut ini tidak dikirimkan lagi ke AS ketiga oleh AS lain tersebut. Atribut ini bersifat Optional Nontransitive.

5. Local Preference
Atribut ini bersifat Wellknown Discretionary, di mana sering digunakan untuk memberitahukan router-router BGP lain dalam satu AS ke mana jalan keluar yang di-prefer jika ada dua atau lebih jalan keluar dalam router tersebut. Atribut ini merupakan kebalikan dari MED, di mana hanya didistribusikan antar-router-router dalam satu AS saja atau router IBGP lain.

6. Atomic Aggregate
Atribut ini bertugas untuk memberitahukan bahwa sebuah rute telah diaggregate (disingkat menjadi pecahan yang lebih besar) dan ini menyebabkan sebagian informasi ada yang hilang. Atribut ini bersifat Wellknown Discretionary.

7. Aggregator
Atribut yang satu ini berfungsi untuk memberikan informasi mengenai Router ID dan nomor Autonomous System dari sebuah router yang melakukan aggregate terhadap satu atau lebih rute. Parameter ini bersifat Optional Transitive.

8. Community
Community merupakan fasilitas yang ada dalam routing protokol BGP-4 yang memiliki kemampuan memberikan tag pada rute-rute tertentu yang memiliki satu atau lebih persamaan. Dengan diselipkannya sebuah atribut community, maka akan terbentuk sebuah persatuan rute dengan tag tertentu yang akan dikenali oleh router yang akan menerimanya nanti. Setelah router penerima membaca atribut ini, maka dengan sendirinya router tersebut mengetahui apa maksud dari tag tersebut dan melakukan proses sesuai dengan yang diperintahkan. Atribut ini bersifat Optional Transitive.

9. Originator ID
Atribut ini akan banyak berguna untuk mencegah terjadinya routing loop dalam sebuah jaringan. Atribut ini membawa informasi mengenai router ID dari sebuah router yang telah melakukan pengiriman routing. Jadi dengan adanya informasi ini, routing yang telah dikirim oleh router tersebut tidak dikirim kembali ke router itu. Biasanya atribut ini digunakan dalam implementasi route reflector. Atribut ini bersifat Optional Nontransitive.

10. Cluster list
Cluster list merupakan atribut yang berguna untuk mengidentifikasi router-router mana saja yang tergabung dalam proses route reflector. Cluster list akan menunjukkan path-path atau jalur mana yang telah direfleksikan, sehingga masalah routing loop dapat dicegah. Atribut ini bersifat Optional Nontransitive.

11. Weight
Atribut yang satu ini adalah merupakan atribut yang diciptakan khusus untuk penggunaan di router keluaran vendor Cisco. Atribut ini merupakan atribut dengan priority tertinggi dan sering digunakan dalam proses path selection. Atribut ini bersifat lokal hanya untuk
digunakan pada router tersebut dan tidak diteruskan ke router lain karena belum tentu router lain yang bukan bermerk Cisco dapat mengenalinya. Fungsi dari atribut ini adalah untuk memilih salah satu jalan yang diprioritaskan dalam sebuah router.

Ketika ada dua buah jalan keluar, maka dengan memodifikasi atribut Weight ini, router dapat memilih salah satu jalan untuk diprioritaskan sebagai jalan keluar. Jadi Anda dapat mengatur dengan leluasa jalan mana yang akan digunakan. Weight tidak digunakan pada router lain selain Cisco.

Bagaimana Proses Path Selection (Pemilihan Jalur Terbaik) dalam BGP?
Setelah Anda mengenal semua jenis atribut dan kegunaannya, kini saatnya untuk mengetahui bagaimana atribut-atribut tersebut digunakan untuk proses pemilihan jalan terbaik menuju suatu lokasi. Mengapa perlu dilakukan pemilihan rute terbaik? Kapan proses pemilihan rute terbaik dilakukan oleh BGP?

Router Anda perlu melakukan pemilihan rute terbaik ketika mendapatkan dua atau lebih rute untuk menuju ke suatu lokasi di luar. Biasanya sebuah router BGP mungkin saja mendapatkan sebuah rute lebih dari dua, tergantung pada banyaknya sesi BGP yang dibentuk dengan tetangga-tetangganya. Semakin banyak sesi BGP dengan router tetangga, maka router tetangga tersebut akan mengirimkan banyak rute yang diketahuinya, sehingga mungkin saja ada yang sama.

Ketika dihadapkan pada dua jalan dengan tujuan yang sama, maka tugas router BGP adalah harus memilih salah satu jalan untuk digunakan meneruskan informasi yang dibawanya. Jalan yang dipilih haruslah jalan yang terbaik yang ada saat itu untuk dapat meneruskan informasi sebaik mungkin. Untuk memilih salah satu jalan tersebut, router BGP akan langsung menjalankan prosedur pemilihan rute terbaik atau yang sering disebut dengan istilah path selection.

Dalam proses pemilihan jalur terbaik atau path selection, atribut-atribut yang telah dijelaskan di ataslah yang sangat berperan penting. Semua atribut tersebut memiliki tingkat prioritasnya sendiri dalam proses penentuan jalur terbaik. Maksudnya ketika ada dua rute menuju ke lokasi www.yahoo.com masing-masing memiliki atribut B dan C, maka router BGP akan membandingkan nilai B dengan C.

Jika ternyata nilai B yang lebih baik, maka rute menuju ke www.yahoo.com adalah rute yang beratribut B. Rute tersebut akan dijadikan sebagai jalur terbaik dan semua traffic menuju www.yahoo.com akan dilarikan melalui jalur B. Sedangkan rute yang memiliki atribut C dijadikan sebagai back-up. Back-up ini akan digunakan suatu saat ketika rute yang beratribut B tadi sedang bermasalah. Jadi rute yang tidak terpilih bukan berarti diabaikan begitu saja. Mekanisme inilah yang merupakan salah satu kehebatan dari BGP.

Proses path selection ke sebuah lokasi yang terjadi dalam sebuah sesi BGP hingga menemukan sebuah jalur terbaik adalah sebagai berikut:

1. Jika hanya ada sebuah rute menuju ke lokasi A, maka rute tersebutlah yang pasti dijadikan rute terbaik dan akan langsung digunakan.

2. Jika ada dua buah rute menuju ke lokasi A, maka router BGP akan menggunakan atribut WEIGH untuk memilih rute mana yang paling baik. Rute dengan nilai WEIGH yang paling tinggi akan dipilih sebagai jalur terbaik.

3. Jika nilai weight keduanya sama, maka router akan menggunakan atribut LOCAL PREFERENCE sebagai bahan pembanding. Rute dengan nilai LOCAL PREFERENCE yang paling tinggi adalah rute yang terpilih sebagai rute terbaik.

4. Jika nilai local preference sama, maka sebagai bahan pembanding router BGP akan memeriksa rute mana yang berasal dari dirinya sendiri. Jika rute tersebut berasal dari dirinya sendiri maka rute tersebut yang akan dijadikan rute terbaik.

5. Jika rute menuju A bukan berasal dari dirinya, maka router akan menggunakan atribut AS_PATH untuk mencari rute terbaik. Rute dengan atribut AS_PATH terpendek akan dipilih sebagai rute terbaik.

6. Apabila atribut AS_PATH nya sama, maka atribut selanjutnya yang digunakan untuk memilih jalan terbaik adalah ORIGIN. Atribut ORIGIN terdiri parameter IGP, EGP dan Incomplete. Parameter dengan nilai referensi terendah yang akan dipilih menjadi rute terbaik. IGP memiliki nilai referensi paling rendah, disusul EGP dan akhirnya Incomplete. Rute dengan atribut ORIGIN IGP akan lebih dipilih daripada EGP atau Incomplete, begitu seterusnya hingga rute dengan atribut Incomplete menjadi rute yang berada di urutan paling belakang.

7. Jika atribut Origin pada rute-rute tersebut sama, maka atribut selanjutnya yang digunakan adalah MED (Multi Exit Discriminator). MED merupakan atribut untuk memungkinkan Anda memilih jalan mana yang paling baik untuk menuju sebuah situs. Jenisnya kurang lebih sama seperti Local Preference, namun bedanya atribut MED ini hanya disebarkan dalam satu AS yang sama saja. Atribut ini tidak dikirimkan ke luar AS dari router BGP tersebut. Biasanya atribut ini banyak digunakan jika sebuah router memiliki dua atau lebih jalan yang sama namun menuju ke satu ISP. Rute dengan nilai MED yang paling rendah adalah yang terpilih sebagai rute terbaik.

8. Jika nilai MED pada kedua rute tersebut sama, maka router BGP akan melakukan pemilihan berdasarkan jenis sesi BGP dari rute-rute tersebut. Seperti telah dijelaskan diatas, jenis BGP ada dua macam yaitu IBGP dan EBGP. Kedua parameter ini juga digunakan dalam pemilihan jalan terbaik. Sebuah rute yang berasal dari sebuah sesi EBGP memiliki prioritas yang lebih tinggi daripada rute dari sesi IBGP. Jadi rute yang berasal dari sesi EBGP dengan router BGP lain tentu akan dijadikan sebagai rute terbaik.

9. Jika setelah melalui ketentuan diatas, kedua rute tersebut juga masih identik, maka proses path selection selanjutnya adalah menggunakan parameter jalur terdekat dalam jaringan internal untuk menuju ke Next Hop. Maksudnya adalah, router BGP akan membaca atribut Next hop dari kedua jalur tersebut. Setelah diketahui, router tersebut akan memeriksa jalur mana yang memilik Next hop yang terdekat dari router tersebut. Jalur yang diperiksa ini merupakan jalur yang berasal dari routing protokol internal seperti OSPF, EIGRP, atau bahkan statik. Setelah didapatkan rute mana yang memiliki Next hop yang paling dekat dan mudah diakses, maka rute tesebut langsung dipilih menjadi yang terbaik.

10. Jika prosedur ini masih tidak membuahkan sebuah rute terbaik juga, maka jalan terakhir untuk menemukannya adalah dengan membandingkan BGP ROUTER ID dari masingmasing rute. Sebuah rute pasti akan membawa informasi BGP ROUTER ID dari router asalnya. Parameter inilah yang menjadi pembanding terakhir untuk proses path selection ini. Karena BGP ROUTER ID tidak mungkin sama, maka sebuah jalan terbaik pastilah dapat terpilih. BGP ROUTER ID biasanya adalah alamat IP tertinggi dari sebuah router atau dapat juga berupa IP interface loopback.
Router BGP akan memilih rute dengan nilai BGP ROUTER ID yang terendah.



sumber:http://iwansatriani.wordpress.com/2009/04/02/bedanya-igrp-dengan-eigrp/
http://blog.unsri.ac.id/userfiles/NEW%20CCNA.pdf
http://rachmad29.blogspot.com/2008/12/bagaimana-cara-kerja-router-
menjalankan.html

Lanjut membaca“Cara Kerja Protokol Pada Router”  »»

Minggu, 16 Januari 2011

Pengertian Protokol - protokol pada OSI Layer

1. SMTP
SMTP (Simple Mail Transfer Protocol) merupakan salah satu protokol yang umum digunakan untuk pengiriman surat elektronik di Internet. Protokol ini dipergunakan untuk mengirimkan data dari komputer pengirim surat elektronik ke server surat elektronik penerima.

2. FTP
File Transfer Protokol (FTP) ialah protokol standar untuk pentransferan data baik download maupun upload. maka dari itu dibedakan menjadi klien ftp dan server ftp.

3. TELNET
Protokol TELNET dipakai untuk menyamai seperti terminal yang terkoneksi untuk host secara remote (berjauhan). Prinsip kerjanya menggunakan TCP sebagai protokol transport untuk mengirimkan informasi dari keyboard pada user menuju remote-host serta menampilkan informasi dari remote-host ke workstation pada user.
Untuk menjalankan proses TELNET maka digunakan komponen TELNET untuk client yang dijalankan pada workstation (user) dan server TELNET yang dijalankan pada host.

4. DNS
sebuah sistem yang menyimpan informasi tentang nama host maupun nama domain dalam bentuk basis data tersebar (distributed database) di dalam jaringan komputer, misalkan: Internet. DNS menyediakan alamat IP untuk setiap nama host dan mendata setiap server transmisi surat (mail exchange server) yang menerima surat elektronik (email) untuk setiap domain.




5. SNMP
Simple Network Management Protocol (SNMP) merupakan protokol standard industri yang digunakan untuk memonitor dan mengelola berbagai perangkat di jaringan Internet meliputi hub, router, switch, workstation dan sistem manajemen jaringan secara jarak jauh (remote).

6. NFS
NFS umumnya menggunakan protokol Remote Procedure Call (RPC) yang berjalan di atas UDP dan membuka port UDP dengan port number 2049 untuk komunikasi antara client dan server di dalam jaringan. Client NFS selanjutnya akan mengimpor sistem berkas remote dari server NFS, sementara server NFS mengekspor sistem berkas lokal kepada client.
Mesin-mesin yang menjalankan perangkat lunak NFS client dapat saling berhubungan dengan perangkat lunak NFS server untuk melakukan perintah operasi tertentu dengan menggunakan request RPC. Adapun operasi-operasi yang didukung oleh NFS adalah sebagai berikut:

> Mencari berkas di dalam direktori.
> Membaca kumpulan direktori.
> Memanipulasi link dan direktori.
> Mengakses atribut berkas.
> Membaca dan menulis berkas.

Perlu diketahui bahwa server NFS bersifat stateless , yang artinya setiap request harus mengandung argumen yang penuh dan jelas sebab server NFS tidak menyimpan sejarah informasi request . Data yang dimodifikasi harus di commit ke server sebelum hasilnya di kembalikan ke client . NFS protokol tidak menyediakan mekanisme concurrency-control.

7. RPC
Remote Procedure Call (RPC) adalah sebuah metode yang memungkinkan kita untuk mengakses sebuah prosedur yang berada di komputer lain. Untuk dapat melakukan ini sebuah server harus menyediakan layanan remote procedure. Pendekatan yang dilakuan adalah sebuah server membuka socket, lalu menunggu client yang meminta prosedur yang disediakan oleh server. Bila client tidak tahu harus menghubungi port yang mana, client bisa me- request kepada sebuah matchmaker pada sebuah RPC port yang tetap. Matchmaker akan memberikan port apa yang digunakan oleh prosedur yang diminta client.

8. TFTP
Trivial File Transfer Protocol (disingkat menjadi TFTP) adalah sebuah protokol perpindahan berkas yang sangat sederhana yang didefinisikan pada tahun 1980. TFTP memiliki fungsionalitas dasar dari protokol File Transfer Protocol (FTP).
Karena protokol ini sangatlah sederhana, maka implementasi protokol ini dalam komputer yang memiliki memori yang kecil sangatlah mudah. Hal ini memang pertimbangan yang sangat penting pada saat itu. Akhirnya, TFTP pun digunakan untuk melakukan booting komputer seperti halnya router jaringan komputer yang tidak memiliki perangkat penyimpanan data. Protokol ini kini masih digunakan untuk mentransfer berkas-berkas kecil antar host di dalam sebuah jaringan, seperti halnya ketika terminal jarak jauh X Window System atau thin client lainnya melakukan proses booting dari sebuah host jaringan atau server.

9. TCP
Transmission Control Protocol (TCP) adalah suatu protokol yang berada di lapisan transpor (pada lapisan OSI) yang berorientasi sambungan (connection-oriented) dan dapat diandalkan (reliable)

10. UDP
singkatan dari User Datagram Protocol, adalah salah satu protokol lapisan transpor TCP/IP yang mendukung komunikasi yang tidak andal (unreliable), tanpa koneksi (connectionless) antara host-host dalam jaringan yang menggunakan TCP/IP. Biasanya untuk hardware dan memory yang lemah dikarenakan protokol ini merupakan protokol yang ringan.

11. ICMP
Internet Control Message Protocol (ICMP) adalah salah satu protokol inti dari keluarga protokol internet. ICMP utamanya digunakan oleh sistem operasi komputer jaringan untuk mengirim pesan kesalahan yang menyatakan, sebagai contoh, bahwa komputer tujuan tidak bisa dijangkau.

12. IGMP
IGMP (Internet Group Management Protocol) yaitu protokol yang mendeteksikan pada router tentang adanya group jaringan multicast dan juga mengetahui beberapa host tertentu yang tergabung dalam multicast tertentu.

13. ARP
ARP (Address Resolution Protocol) : yaitu protokol yang berfungsi untuk mendata siapa atau tujuan kemana data akan dikirimkan. yaitu dengan meresolusi alamat IP ke MAC address dari hardware tujuan data tersebut.

14. RARP
RARP (Reverse Address Resolution Protocol) : yaitu protokol yang mendata juga tujuan data akan dikirimkan atau siapa yang berada pada jaringan itu. yaitu dengan meresolusi MAC address tujuan tersebut kedalam bentuk IP dari hardware tujuan itu.

Lanjut membaca“Pengertian Protokol - protokol pada OSI Layer”  »»

7 OSI Layer dan Protokol - protokolnya


Supaya setiap peralatan dalam sebuah jaringan dapat berkomunikasi, maka peralatan tersebut harus memiliki 'bahasa' yang sama. Hal itulah yang disebut dengan protokol. Protokol adalah sekumpulan aturan yang mendefinisikan bagaimana peralatan-peralatan dalam jaringan saling berkomunikasi.

Pada mulanya setiap vendor memiliki standar masing-masing sehingga sebuah peralatan jaringan hanya dapat berkomunikasi dengan peralatan yang memiliki merek yang sama.
Kemudian supaya setiap peralatan jaringan dari berbagai vendor dapat saling berkomunikasim dibuatlah standarisasi. Salah satu standar yang banyak digunakan saat ini adalah OSI (Open System Interconnection) yang dikembangkon oleh ISO (Internasional Standart Organization).
Pada model OSI ini diterapkan model lapisan atau layer dimana setiap lapisan memiliki fungsi masing-masing. Standar OSI tidak membahas secara mendetail tentang cara kerja masing-masing lapisan. tetapi hanya memberikan konsep dan menentukan proses yang terjadi pada lapisan tertentu serta menentukan protokol yang dapat digunakan pada lapisan tersebut.
Pada model OSI, ada tujuh lapisan/layer yang masing-masing beserta fungsi dan contoh protokol sebagai berikut.

1. APLICATION LAYER
Melayani antar muka antara aplikasi dan jaringan, protokol yang digunakan contohnya FTP, DMTIP, POP3.
2. PRESENTATION LAYER
Menangani format data agar dapat dimengerti oleh penerima, pada layer ini juga kompresi, enkripsi-deskripsi data dilakukan, contoh protokolnmya ASCII, MPEG, JPEG.
3. SESSION LAYER
Memisahkan data antar sesi dan antar aplikasi yang berjalan, contohnya protokol SQL, RPC.
4. TRANSPORT LAYER
Mengatur jalannya pertukaran data, pada lapisan ini juga ada fungsu error recovery, contoh protokolnya TCP, UDP, SPX.
5. NETWORK LAYER
Menentukan jalur atau rute pengiriman dan meneruskan paket ke alamat tujuan, contoh protokolnya IP, IPX ARP, RARP, ICMP, RIP.
6. DATA LINK LAYER
Memeprsiapkan dan membangun transmisi data, contoh protokolnya SLIP, PPP, MTU.
7. PHYSICAL LAYER
Mentransmisikan data biner melalui komunikasi, contoh protokolnya : 10baseT, 100baseT, RS232.
Proses yang terjadi pada informasi yang dikirimkan oleh sebuah aplikasi ketika melalui lapisan OSI di atas adalah sebagai berikut
1. Pada Aplication, Presentation dan session layer, informasi diubah menjadi data.
2. Pada Transport layer, data diubah menjadi segmen.
3. Pada Network layer, segmen diubah menjadi paket.
4. Pada Data link layer, paket diubah menjadi frame.
5. Pada Phisical layer, frame diubah menjadi bit sehingga siap untuk dikirimkan.

Lanjut membaca“7 OSI Layer dan Protokol - protokolnya”  »»

Kamis, 06 Januari 2011

Setting WEP BlueLink

1. tancapkan kabel utp streght dari computer ke bluelink
2. setelah konek, masuk ke 192.168.2.254 (ip default)
3. user name = admin password = admin
4. masuk ke setup wizard
5. ganti ip default dengan sekmen yang sesuai dengan sekmen router
6. ganti dhcp menjadi static ip

7. masukkan ip address dengan sekmen yang sama dengan router
8. masukkan gateway (ip router)
9. masukkan dns (contoh: 202.134.1.10)
10. ganti channel apabila ada yang sudah menggunakan
11. ganti encryption menjadi WEP
12. masukkan kata kunci pada Encryption key 1
13. selesai
14. masuk ke TCP/IP settings
15. WAN Interface
16. masukkan alamat DNS 2 (contoh: 202.134.0.155)
17. apply changes
18. lalu coba access dengan laptop

Lanjut membaca“Setting WEP BlueLink”  »»